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Capacity of a Class of State-Dependent
Orthogonal Relay Channels

Iñaki Estella Aguerri and Deniz Gündüz, Senior Member, IEEE

Abstract— The class of orthogonal relay channels in which
the orthogonal channels connecting the source terminal to the
relay and the destination, and the relay to the destination,
depend on a state sequence, is considered. It is assumed that
the state sequence is fully known at the destination, while
it is not known at the source or the relay. The capacity of
this class of relay channels is characterized, and shown to be
achieved by the partial decode-compress-and-forward (pDCF)
scheme. Then, the capacity of certain binary and Gaussian state-
dependent orthogonal relay channels are studied in detail, and
it is shown that the compress-and-forward (CF) and partial-
decode-and-forward (pDF) schemes are suboptimal in general.
To the best of our knowledge, this is the first single relay
channel model for which the capacity is achieved by pDCF, while
pDF and CF schemes are both suboptimal. Furthermore, it is
shown that the capacity of the considered class of state-dependent
orthogonal relay channels is in general below the cut-set bound.
The conditions under which pDF or CF suffices to meet the
cut-set bound, and hence, achieve the capacity, are also derived.

Index Terms— Capacity, channels with state, relay
channel, decode-and-forward, compress-and-forward, partial
decode-compress-and forward.

I. INTRODUCTION

WE CONSIDER a state-dependent orthogonal relay
channel, in which the channels connecting the source

to the relay, and the source and the relay to the destination
are orthogonal, and are governed by a state sequence, which
is assumed to be known only at the destination. We call this
model the state-dependent orthogonal relay channel with state
information available at the destination, and refer to it as the
ORC-D model. See Figure 1 for an illustration of the ORC-D
channel model.

Many practical communication scenarios can be modelled
by the ORC-D model. For example, consider a cognitive
network with a relay, in which the transmit signal of the
secondary user interferes simultaneously with the received
primary user signals at both the relay and the destination.
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Fig. 1. Orthogonal state-dependent relay channel with channel state infor-
mation available at the destination, called the ORC-D model.

After decoding the secondary user’s message, the destination
obtains information about the interference affecting the source-
relay channel, which can be exploited to decode the primary
transmitter’s message. Note that the relay may be oblivious
to the presence of the secondary user, and hence, may not
have access to the side information. Similarly, consider a
mobile network with a relay (e.g., a femtostation), in which
the base station (BS) operates in the full-duplex mode, and
transmits on the downlink channel to a user, in parallel to the
uplink transmission of a femtocell user, causing interference
for the uplink transmission at the femtostation. While the
femtostation, i.e., the relay, has no prior information about this
interfering signal, the BS knows it perfectly and can exploit
this knowledge to decode the uplink user’s message forwarded
by the femtostation.

The best known transmission strategies for the three
terminal relay channel are the decode-and-forward (DF),
compress-and-forward (CF) and partial decode-compress-and-
forward (pDCF) schemes, which were all introduced by Cover
and El Gamal in [2]. In DF, the relay decodes the source
message and forwards it to the destination together with the
source terminal. DF is generalized by the partial decode-
and-forward (pDF) scheme in which the relay decodes and
forwards only a part of the message. In the ORC-D model,
pDF would be optimal when the channel state information
is not available at the destination [3]; however, when the
state information is known at the destination, fully decoding
and re-encoding the message transmitted on the source-relay
link renders the channel state information at the destination
useless. Hence, we expect that pDF is suboptimal for ORC-D
in general.

In CF, the relay does not decode any part of the message,
and simply compresses the received signal and forwards the
compressed bits to the destination using Wyner-Ziv cod-
ing followed by separate channel coding. Using CF in the
ORC-D model allows the destination to exploit its knowledge
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of the state sequence; and hence, it can decode messages that
may not be decodable by the relay. However, CF also forwards
some noise to the destination, and therefore, may be subop-
timal in certain scenarios. For example, as the dependence
of the source-relay channel on the state sequence weakens,
i.e., when the state information becomes less informative,
CF performance is expected to degrade.

pDCF combines both schemes: part of the source message
is decoded by the relay, and forwarded, while the remaining
signal is compressed and forwarded to the destination. Hence,
pDCF can optimally adapt its transmission to the dependence
of the orthogonal channels on the state sequence. Indeed, we
show that pDCF achieves the capacity in the ORC-D channel
model, while pure DF and CF are in general suboptimal. The
main results of the paper are summarized as follows:

• We derive an upper bound on the capacity of the
ORC-D model, and show that it is achievable by the
pDCF scheme. This characterizes the capacity of this
class of relay channels.

• Focusing on the multi-hop binary and Gaussian models,
we show that applying either only the CF or only the DF
scheme is in general suboptimal.

• We show that the capacity of the ORC-D model is
in general below the cut-set bound. We identify the
conditions under which pure DF or pure CF meet the cut-
set bound. Under these conditions the cut-set bounds is
tight, and either DF or CF scheme is sufficient to achieve
the capacity.

While the capacity of the general relay channel is still an
open problem, there have been significant achievements within
the last decade in understanding the capabilities of various
transmission schemes, and the capacity of some classes of
relay channels has been characterized. For example, DF is
shown to be optimal for physically degraded relay channels
and inversely degraded relay channels in [2]. In [3], the
capacity of the orthogonal relay channel is characterized, and
shown to be achieved by the pDF scheme. It is shown in [4]
that pDF achieves the capacity of semi-deterministic relay
channels as well. CF is shown to achieve the capacity in
deterministic primitive relay channels in [5]. While all of these
capacity results are obtained by using the cut-set bound for
the converse proof [6], the capacity of a class of modulo-sum
relay channels is characterized in [7], and it is shown that the
capacity, achievable by the CF scheme, can be below the cut-
set bound. The pDCF scheme is shown to achieve the capacity
of a class of diamond relay channels in [8].

The state-dependent relay channel has also attracted con-
siderable attention in the literature. Key to the investigation
of the state-dependent relay channel model is whether the
state sequence controlling the channel is known at the nodes
of the network, the source, relay or the destination in a
causal or non-causal manner. The relay channel in which
the state information is non-causally available only at the
source is considered in [9] and [10], and both causally and
non-causally available state information is considered in [11].
The model in which the state is non-causally known only
at the relay is studied in [12] while causal and non-causal
knowledge is considered in [13]. Similarly, the relay channel

with state causally known at the source and relay is considered
in [14], and state non-causally known at the source, relay
and destination in [15]. Recently a generalization of pDF,
called the cooperative-bin-forward scheme, has been shown
to achieve the capacity of state-dependent semi-deterministic
relay channels with causal state information at the source and
destination [16]. The compound relay channel with informed
relay and destination are discussed in [17] and [18]. The
state-dependent relay channel with structured state has been
considered in [19] and [20]. To the best of our knowledge,
this is the first work that focuses on the state-dependent relay
channel in which the state information is available only at the
destination.

The rest of the paper is organized as follows. In Section II
we provide the system model and our main result. Section III
is devoted to the proofs of the achievability and converse
for the main result. In Section IV, we provide two examples
demonstrating the suboptimality of pDF and CF schemes on
their own, and in Section V we show that the capacity is in
general below the cut-set bound, and we provide conditions
under which pure DF and CF schemes meet the cut-set bound.
Finally, Section VI concludes the paper.

We use the following notation in the rest of the paper:
X j

i � (Xi , Xi+1, . . . , X j ) for i < j , Xn � (X1, . . . , Xn)

for the complete sequence, Xn
n+1 � ∅, and Zn\i �

(Z1, . . . , Zi−1, Zi+1, . . . , Zn).

II. SYSTEM MODEL AND MAIN RESULT

We consider the class of orthogonal relay channels depicted
in Figure 1. The source and the relay are connected through a
memoryless channel characterized by p(yR|x1, z), the source
and the destination are connected through an orthogonal mem-
oryless channel characterized by p(y2|x2, z), while the relay
and the destination are connected by a memoryless channel
p(y1|xR, z). The three memoryless channels depend on an
independent and identically distributed (i.i.d.) state sequence
{Z}n

i=1, which is available at the destination. The input and
output alphabets are denoted by X1, X2, XR , Y1, Y2 and YR ,
and the state alphabet is denoted by Z .

Let W be the message to be transmitted to the destination
with the assistance of the relay. The message W is assumed
to be uniformly distributed over the set W = {1, . . . , M}.
An (M, n, νn) code for this channel consists of an encoding
function at the source:

f : {1, . . . , M} → X n
1 × X n

2 , (1)

a set of encoding functions { fr,i }n
i=1 at the relay, whose

output at time i depends on the symbols it has received up to
time i − 1:

X Ri = fr,i (YR1, . . . , YR(i−1)), i = 1, . . . , n, (2)

and a decoding function at the destination

g : Yn
1 × Yn

2 × Zn → {1, . . . , M}. (3)

The probability of error, νn , is defined as

νn � 1

M

M∑

w=1

Pr{g(Y n
1 , Y n

2 , Zn) �= w|W = w}. (4)
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Fig. 2. The ORC-D as a class of primitive relay channel.

Fig. 3. The ORC-D is a particular case of the state dependent orthogonal
relay channel with orthogonal components.

The joint probability mass function (pmf) of the involved
random variables over the set W × Zn × X n

1 × X n
2 × X n

R ×
Yn

R × Yn
1 × Yn

2 is given by

p(w, zn, xn
1 , xn

2 , xn
R, yn

R, yn
1 , yn

2 )= p(w)

n∏

i=1

p(zi )p(x1i , x2i |w)

· (yRi |zi , x1i )p(xRi |yi−1
R )p(y1i |xRi , zi )p(y2i |x2i , zi ).

A rate R is said to be achievable if there exists a sequence of
(2nR, n, νn) codes such that limn→∞ νn = 0. The capacity, C,
of this class of state-dependent orthogonal relay channels,
denoted as ORC-D, is defined as the supremum of the set
of all achievable rates.

We define R1 and R2 as follows, which can be thought as
the capacities of the individual links from the relay to the des-
tination, and from the source to the destination, respectively,
when the channel state sequence is available at the destination:

R1 � max
p(xR)

I (X R; Y1|Z), R2 � max
p(x2)

I (X2; Y2|Z). (5)

Let p∗(xR) and p∗(x2) be the channel input distributions
achieving R1 and R2, respectively.

Let us define P as the set of all joint pmf’s given by

P � {p(u, x1, z, yR, ŷR) : p(u, x1, z, yR, ŷR)

= p(u, x1)p(z)p(yR|x1, z)p(ŷR|yR, u)}, (6)

where U and ŶR are auxiliary random variables defined over
the alphabets U and ŶR , respectively.

The main result of this work, provided in the next theorem,
is the capacity of the class of relay channels described above.

Theorem 1: The capacity of the ORC-D relay channel is
given by

C = sup
P

R2 + I (U ; YR) + I (X1; ŶR |U Z),

s.t. R1 ≥ I (U ; YR) + I (YR; ŶR |U Z), (7)

where |U | ≤ |X1| + 3 and |ŶR | ≤ |U ||YR | + 1.

Proof: The achievability part of the theorem is proven
in Section III-A, while the converse proof can be found
in Section III-B. �

In the next section, we show that the capacity of this class
of state-dependent relay channels is achieved by the pDCF
scheme. To the best of our knowledge, this is the first single-
relay channel model for which the capacity is achieved by
pDCF, while the pDF and CF schemes are both suboptimal
in general. In addition, the capacity of this relay channel is in
general below the cut-set bound [6]. These issues are discussed
in more detail in Sections IV and V.

It follows from Theorem 1 that the transmission over the
relay-destination and source-destination links can be indepen-
dently optimized to operate at the corresponding capacities,
and these links in principle act as error-free channels of capac-
ity R1 and R2, respectively. We also note that the relay can
acquire some knowledge about the channel state sequence Zn

from its channel output Y n
R , and could use it in the trans-

mission over the relay-destination link, which depends on the
same state information sequence. In general, non-causal state
information available at the relay can be exploited to increase
the achievable throughput in multi-user setups [21], [22].
However, it follows from Theorem 1 that this knowledge is
useless. This is because the channel state information acquired
from Y n

R can be seen as delayed feedback to the relay, which
does not increase the capacity in point-to-point channels.

A. Comparison With Previous Relay Channel Models

Here, we compare ORC-D with other relay channel mod-
els in the literature, and discuss the differences and simi-
larities. The discrete memoryless relay channel consists of
four finite sets X , XR , Y and YR , and a probability dis-
tribution p(y, yR|x, xR). In this setup, X corresponds to
the source input to the channel, Y to the channel output
available at the destination, while YR is the channel output
available at the relay, and X R is the channel input sym-
bol chosen by the relay. We note that the three-terminal
relay channel model in [2] reduces to ORC-D by setting
Xn = (Xn

1 , Xn
2 ), Y n = (Y n

1 , Y n
2 , Zn), and p(y, yR|x1xR) =

p(y1, y2, yR, z|x1, x2, xR) = p(z)p(yR|x1, z)p(y1|xR, z)
p(y2|x2, z).

By considering the channel from the relay to the destination
as an error-free link with finite capacity, the ORC-D is
included in the class of primitive relay channels proposed
in [5] and [23] as seen in Figure 2, for which the channel
distribution satisfies p(y, yR|x, xR) = p(y, yR|x). Although
the capacity of this channel remains unknown in general,
it has been characterized for certain special cases. CF has
been shown to achieve the cut-set bound, i.e., to be optimal,
in [5], if the relay output, YR , is a deterministic function of the
source input and output at the destination, i.e., YR = f (X, Y ).
The capacity of a class of primitive relay channels under a
particular modulo sum structure is shown to be achievable
by CF in [7], and to be below the cut-set bound. Theorem 1
provides the optimality of pDCF for a class of primitive relay
channels, not included in any of the previous relay models for
which the capacity is known. It is discussed in [23] that for
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the primitive relay channel, CF and DF do not outperform one
another in general. It is also noted that their combination in the
form of pDCF might not be sufficient to achieve the capacity
in general. We will see in Section IV that both DF and CF
are in general suboptimal, and that pDCF is necessary and
sufficient to achieve the capacity for the class of primitive
relay channels considered in this paper.

It is also interesting to compare the ORC-D model with
the orthogonal relay channel proposed in [3], in which
the source-relay link is orthogonal to the multiple-access
channel from the source and relay to the destination,
i.e., p(y, yR|x, xR) = p(y|x2, xR)p(yR|x1, xR). The capacity
for this model is shown to be achievable by pDF, and
coincides with the cut-set bound. For the ORC-D, we have
p(y, yR|x, xR) = p(z)p(y2|x2, z)p(y1|xR, z)p(yR|x1, xR, z),
i.e., given the channel inputs, the orthogonal channel outputs
at the relay and the destination are still dependent due to Z .
Therefore, the ORC-D does not fall within the class of orthog-
onal channels considered in [3]. We can consider the class of
state dependent relay channel with orthogonal components sat-
isfying p(y, z, yR|x, xR) = p(z)p(y|x2, xR, z)p(yR|x1, xR, z)
as shown in Figure 3. This class includes the orthogonal relay
channel in [3] and the ORC-D as a particular cases. However,
the capacity for this class of state dependent relay channel
remains open in general.

III. PROOF OF THEOREM 1

We first show in Section III-A that the capacity claimed
in Theorem 1 is achievable by pDCF. Then, we derive the
converse result for Theorem 1 in Section III-B.

A. Achievability

We derive the rate achievable by the pDCF scheme for
ORC-D using the achievable rate expression for the pDCF
scheme proposed in [2] for the general relay channel. Note that
the three-terminal relay channel in [2] reduces to ORC-D by
setting Xn = (Xn

1 , Xn
2 ) and Y n = (Y n

1 , Y n
2 , Zn), as discussed

in Section II-A.
In pDCF for the general relay channel, the source applies

message splitting, and the relay decodes only a part of the
message. The part to be decoded by the relay is transmitted
through the auxiliary random variable Un , while the rest of
the message is superposed onto this through channel input Xn .
Block Markov encoding is used for transmission. The relay
receives Y n

R and decodes only the part of the message that
is conveyed by Un . The remaining signal Y n

R is compressed
into Ŷ n

R . The decoded message is forwarded through V n , which
is correlated with Un , and the compressed signal is superposed
onto V n through the relay channel input Xn

R . At the destination
the received signal Y n is used to recover the message. See [2]
for details. The achievable rate of the pDCF scheme is given
below.

Theorem 2 [2, Th. 7]: The capacity of a relay channel
p(y, yR|x, xR) is lower bounded by the following rate:

RpDCF = sup min{I (X; Y, ŶR |X R, U) + I (U ; YR |X R, V ),

I (X, X R; Y ) − I (ŶR; YR|X, X R, U, Y )},
s.t. I (ŶR; YR |Y, X R , U) ≤ I (X R; Y |V ), (8)

where the supremum is taken over all joint pmf’s of the form

p(v)p(u|v)p(x |u)p(xR|v)p(y, yR|x, xR)p(ŷR|xR, yR, u).

Since ORC-D is a special case of the general relay channel
model, the rate RpDCF is achievable in an ORC-D as well.
The capacity achieving pDCF scheme for ORC-D is obtained
from (8) by setting V = ∅, and generating Xn

R and Xn
1

independent of the rest of the variables with distribution
p∗(xR) and p∗(x1), respectively, as given in the next lemma.

Lemma 1: For the class of relay channels characterized by
the ORC-D model, the capacity expression C defined in (7) is
achievable by the pDCF scheme.

Proof: See Appendix A. �
The optimal pDCF scheme for ORC-D applies indepen-

dent coding over the source-destination and the source-relay-
destination branches. The source applies message splitting.
Part of the message is transmitted over the source-destination
branch and decoded at the destination using Y n

2 and Zn .
In the relay branch, the part of the message to be decoded
at the relay is transmitted through Un , while the rest of the
message is superposed onto this through the channel input Xn

1 .
At the relay the part conveyed by Un is decoded from Y n

R , and
the remaining signal Y n

R is compressed into Ŷ n
R using binning

and assuming that Zn is available at the decoder. Both Un

and the bin index corresponding to Ŷ n
R are transmitted over

the relay-destination channel using Xn
R . At the destination,

Xn
R is decoded from Y n

1 , and Un and the bin index are
recovered. Then, the decoder looks for the part of message
transmitted over the relay branch jointly typical with Ŷ n

R within
the corresponding bin and Zn .

B. Converse

The proof of the converse consists of two parts. First we
derive a single-letter upper bound on the capacity, and then,
we provide an alternative expression for this bound, which
coincides with the rate achievable by pDCF.

Lemma 2: The capacity of the class of relay channels
characterized by the ORC-D model is upper bounded by

Rup = sup
P

min{R2 + I (U ; YR) + I (X1; ŶR|U Z), (9)

R1 + R2 − I (ŶR; YR |X1U Z)}. (10)

Proof: See Appendix B. �
As stated in the next lemma, the upper bound Rup , given in

Lemma 2, is equivalent to the capacity expression C given in
Theorem 1. Since the achievable rate meets the upper bound,
this concludes the proof of Theorem 1.

Lemma 3: The upper bound on the achievable rate Rup

given in Lemma 2 is equivalent to the capacity expression C
in Theorem 1.

Proof: See Appendix C. �

IV. THE MULTIHOP RELAY CHANNEL WITH STATE:
SUBOPTIMALITY OF PURE pDF AND CF SCHEMES

We have seen in Section III that the pDCF scheme is
capacity-achieving for the class of relay channels characterized
by the ORC-D model. In order to prove the suboptimality
of the pure DF and CF schemes for this class of relay
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channels, we consider a simplified system model, called the
multihop relay channel with state information available at the
destination (MRC-D), which is obtained by simply remov-
ing the direct channel from the source to the destination,
i.e., R2 = 0.

The capacity of this multihop relay channel model and
the optimality of pDCF follows directly from Theorem 1.
However, the single-letter capacity expression depends on the
joint pmf of X1, YR , X R and Y1 together with the auxiliary
random variables U and ŶR . Unfortunately, the numerical
characterization of the optimal joint pmf of these random
variables is very complicated for most channels. A simple
and computable upper bound on the capacity can be obtained
from the cut-set bound [24]. For MRC-D, the cut-set bound
is given by

RCS = min{R1, max
p(x1)

I (X1; YR|Z)}. (11)

Next, we characterize the rates achievable by the DF and
CF schemes for MRC-D. Since they are special cases of
the pDCF scheme, their achievable rates can be obtained by
particularizing the achievable rate of pDCF for this setup.

1) DF Scheme: If we consider a pDCF scheme that does
not perform any compression at the relay, i.e., ŶR = ∅, we
obtain the rate achievable by the pDF scheme. Note that the
optimal distribution of X R is given by p∗(xr ). Then, we have

RpDF = min{R1, sup
p(x1,u)

I (U ; YR)}. (12)

From the Markov chain U − X1 − YR , we have I (U ; YR) ≤
I (X1; YR), where the equality is achieved by U = X1.
That is, the performance of pDF is maximized by letting the
relay decode the whole message. Therefore, the maximum
rate achievable by pDF and DF for MRC-D coincide, and
is given by

RDF = RpDF = min{R1, max
p(x1)

I (X1; YR)}. (13)

We note that considering more advanced DF strategies based
on list decoding as in [23] does not increase the achievable
rate in the MRC-D, since there is no direct link.

2) CF Scheme: If the pDCF scheme does not perform any
decoding at the relay, i.e., U = V = ∅, pDCF reduces to CF.
Then, the achievable rate for the CF scheme in MRC-D is
given by

RCF = sup I (X1; ŶR |Z)

s.t. R1 ≥ I (ŶR; YR |Z),

over p(x1)p(z)p(yR|x1, z)p(ŷR|yR). (14)

A. Multihop Parallel Binary Symmetric Channel

In this section we consider a special MRC-D as shown in
Figure 4, which we call the parallel binary symmetric MRC-D.
For this setup, we characterize the optimal performance of
the DF and CF schemes, and show that in general pDCF
outperforms both, and that in some cases the cut-set bound
is tight and coincides with the channel capacity. This example
proves the suboptimality of both DF and CF on their own
for ORC-D.

Fig. 4. The parallel binary symmetric MRC-D with parallel source-relay
links. The destination has side information about only one of the source-relay
links.

In this scenario, the source-relay channel consists of two
parallel binary symmetric channels. We have X1 = (X1

1, X2
1),

YR = (Y 1
R, Y 2

R) and p(yR|xR, z) = p(y1
R|x1

1 , z)p(y2
R|x2

1)
characterized by

Y 1
R = X1

1 ⊕ N1 ⊕ Z , and Y 2
R = X2

1 ⊕ N2,

where N1 and N2 are i.i.d. Bernoulli random variables with
Pr{N1 = 1} = Pr{N2 = 1} = δ, i.e., N1 ∼ Ber(δ) and
N2 ∼ Ber(δ). We consider a Bernoulli distributed state Z ,
Z ∼ Ber(pz), which affects one of the two parallel channels,
and is available at the destination. We have X 1

1 = X 2
1 = Y1

R =
Y1

R = N1 = N2 = Z = {0, 1}.
From (11), the cut-set bound is given by

RCS = min{R1, max
p(x1

1 x2
1 )

I (X1
1 X2

1; Y 1
RY 2

R |Z)}
= min{R1, 2(1 − h2(δ))}, (15)

where h2(·) is the binary entropy function defined as
h2(p) � −p log p − (1 − p) log(1 − p).

The maximum DF rate is achieved by X1
1 ∼ Ber(1/2) and

X2
1 ∼ Ber(1/2), and is found to be

RDF = min{R1, max
p(x1

1 x2
1 )

I (X1
1 X2

1; Y 1
RY 2

R)}
= min{R1, 2 − h2(δ � pz) − h2(δ)}, (16)

where α � β � α(1 − β) + (1 − α)β.
Following (14), the rate achievable by the CF scheme in the

parallel binary symmetric MRC-D is given by

RCF = max I (X1
1 X2

1, ŶR |Z),

s.t. R1 ≥ I (Y 1
RY 2

R; ŶR|Z)

over p(z)p(x1
1 x2

1)p(y1
R|z, x1

1)p(y2
R|x2)p(ŷR|y1

R y2
R).

(17)

Let us define h−1
2 (q) as the inverse of the entropy function

h2(p) for q ≥ 0. For q < 0, we define h−1
2 (q) = 0.

As we show in the next lemma, the achievable CF rate
in (17) is maximized by transmitting independent channel
inputs over the two parallel links to the relay by setting
X1

1 ∼ Ber(1/2), X2
1 ∼ Ber(1/2), and by independently

compressing each of the channel outputs Y 1
R and Y 2

R as
Ŷ 1

R = Y 1
R ⊕ Q1 and Ŷ 2

R = Y 2
R ⊕ Q2, respectively, where

Q1 ∼ Ber(h−1
2 (1 − R1/2)) and Q2 ∼ Ber(h−1

2 (1 − R1/2)).
Note that for R1 ≥ 2, the channel outputs can be compressed
errorlessly. The maximum achievable CF rate is given in the
following lemma.
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Lemma 4: The maximum rate achievable by CF over the
parallel binary symmetric MRC-D is given by

RCF = 2

(
1 − h2

(
δ � h−1

2

(
1 − R1

2

)))
. (18)

Proof: See Appendix D. �
Now, we consider the pDCF scheme for the parallel binary

symmetric MRC-D. Although we have not been able to
characterize the optimal choice of (U, ŶR, X1

1, X2
1) in general,

we provide an achievable scheme that outperforms both DF
and CF schemes and meets the cut-set bound in some regimes.
Let X1

1 ∼ Ber(1/2) and X2
1 ∼ Ber(1/2) and U = X2

1, i.e., the
relay decodes the channel input X2

1, while Y 1
R is compressed

using ŶR = Y 1
R + Q, where Q ∼ Ber(h−1

2 (2 − h2(δ) − R1)).
The rate achievable by this scheme is given in the following
lemma.

Lemma 5: A lower bound on the achievable pDCF rate
over the parallel binary symmetric MRC-D is given by

RpDCF ≥ min{R1, 2 − h2(δ)−h2

(
δ � h−1

2 (2 − h2(δ)− R1)
)
}.

Proof: See Appendix E. �
We notice that for pz ≤ h−1

2 (2 − h2(δ) − R1), or equiv-
alently, δ ≤ h−1

2 (2 − h2(pz) − R1), the proposed pDCF is
outperformed by DF. In this regime, pDCF can achieve the
same performance by decoding both channel inputs, reducing
to DF.

Comparing the cut-set bound expression in (15) with RDF
in (16) and RCF in (18), we observe that DF achieves the cut-
set bound if R1 ≤ 2 − h(δ � pz) − h(δ) while RCF coincides
with the cut-set bound if R1 ≥ 2. On the other hand, the
proposed suboptimal pDCF scheme achieves the cut-set bound
if R1 ≥ 2−h2(δ), i.e., for δ ≥ h−1

2 (2−R1). Hence, the capacity
of the parallel binary symmetric MRC-D in this regime is
achieved by pDCF, while both DF and CF are suboptimal, as
stated in the next lemma.

Lemma 6: If R1 < 2 and δ ≥ h−1
2 (2 − R1), pDCF achieves

the capacity of the parallel binary symmetric MRC-D, while
pure CF and DF are both suboptimal under these constraints.
For R1 ≥ 2, both CF and pDCF achieve the capacity.

The achievable rates of DF, CF and pDCF, together with
the cut-set bound are shown in Figure 5 with respect to δ
for R1 = 1.2 and pz = 0.15. We observe that in this setup,
DF outperforms CF in general, while for δ ≤ h−1

2 (2 − R1 −
h2(pz)) = 0.0463, DF outperforms the proposed suboptimal
pDCF scheme as well. We also observe that pDCF meets the
cut-set bound for δ ≥ h−1

2 (2 − R1) = 0.2430, characterizing
the capacity in this regime, and proving the suboptimality of
both the DF and CF schemes when they are used on their own.

B. Multihop Binary Symmetric Channel

In order to gain further insights into the proposed pDCF
scheme, we look into the binary symmetric MRC-D, in which,
there is only a single channel connecting the source to the
relay, given by

YR = X1 ⊕ N ⊕ Z , (19)

where N ∼ Ber(δ) and Z ∼ Ber(pz).

Fig. 5. Achievable rates and the cut-set upper bound for the parallel binary
symmetric MRC-D with respect to the binary noise parameter δ, for R1 = 1.2
and pz = 0.15.

Similarly to Section IV-A, the cut-set bound and the maxi-
mum achievable rates for DF and CF are found as

RCS = min{R1, 1 − h2(δ)}, (20)

RDF = min{R1, 1 − h2(δ � pz)}, (21)

RCF = 1 − h2(δ � h−1
2 (1 − R1))), (22)

where RDF is achieved by X1 ∼ Ber(1/2), and RCF can be
shown to be maximized by X1 ∼ Ber(1/2) and ŶR = YR ⊕ Q,
where Q ∼ Ber(h−1

2 (1−R1)) similarly to Lemma 4. Note that,
for YR independent of Z , i.e., pz = 0, DF achieves the cut-set
bound while CF is suboptimal. However, CF outperforms DF
whenever pz ≥ h−1

2 (1 − R1).
For the pDCF scheme, we consider binary (U, X1, ŶR),

with U ∼ Ber(p), a superposition codebook X1 = U ⊕ W ,

where W ∼ Ber(q), and ŶR = YR ⊕ Q with Q ∼ Ber(α).
As stated in the next lemma, the maximum achievable rate
of this pDCF scheme is obtained by reducing it to either
DF or CF, depending on the values of pz and R1.

Lemma 7: For the binary symmetric MRC-D, pDCF with
binary (U, X1, ŶR) achieves the following rate.

RpDCF = max{RDF, RCF}

=
{

min{R1, 1 − h2(δ � pz)} if pz < h−1
2 (1 − R1),

1 − h2(δ � h−1
2 (1 − R1)) if pz ≥ h−1

2 (1 − R1).

(23)
This result justifies the pDCF scheme proposed in

Section IV-A for the parallel binary symmetric MRC-D.
Since the channel p(y2

1 |x2) is independent of the channel
state Z , the largest rate is are achieved if the relay decodes
X2

1 from Y 2
R . However, for channel p(y1

1 |x1, z), which depends
on Z , the relay either decodes X1

1, or compress Y 1
R , depending

on pz .

C. Multihop Gaussian Channel With State

Next, we consider an AWGN multihop channel, called
Gaussian MRC-D, in which the source-relay link is charac-
terized by YR = X1 + V , while the destination has access to
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Fig. 6. The multihop Gaussian relay channel with source-relay channel state
information available at the destination.

correlated state information Z . We assume that V and Z are
zero-mean jointly Gaussian random variables with a covari-
ance matrix

CZ V =
[

1 ρ
ρ 1

]
. (24)

The channel input at the source has to satisfy the power con-
straint E[|Xn

1 |2] ≤ n P . Finally, the relay and the destination
are connected by a noiseless link of rate R1 (see Figure 6 for
the channel model).

In this case, the cut-set bound is given by

RCS = min

{
R1,

1

2
log

(
1 + P

1 − ρ2

)}
. (25)

It easy to characterize the optimal DF rate, achieved by a
Gaussian input, as follows:

RDF = min

{
R1,

1

2
log(1 + P)

}
. (26)

For CF and pDCF, we consider the achievable rate when
the random variables (X1, U, ŶR) are constrained to be jointly
Gaussian, which is a common assumption in evaluating achiev-
able rates, yet potentially suboptimal. For CF, we generate
the compression codebook using ŶR = YR + Q, where
Q ∼ N (0, σ 2

q ). Optimizing over σ 2
q , the maximum achievable

rate is given by

RCF = R1 − 1

2
log

(
P + 22R1(1 − ρ2)

P + 1 − ρ2

)
. (27)

For pDCF, we let U ∼ N (0, αP1), and X1 = U + T
to be a superposition codebook where T is independent of
U and distributed as T ∼ N (0, ᾱP1), where ᾱ � 1 − α.
We generate a quantization codebook using the test channel
ŶR = YR + Q as in CF. Next lemma shows that with
this choice of random variables, pDCF reduces either to
pure DF or pure CF, similarly to the multihop binary model
in Section IV-B.

Lemma 8: The optimal achievable rate for pDCF with
jointly Gaussian (X1, U, ŶR) is given by

RpDCF = max{RDF, RCF}

=
{

min {R1, 1/2 log(1 + P)} if ρ2 ≤ 2−2R1(1+ P),

R1− 1
2 log

(
P+22R1 (1−ρ2)

P+1−ρ2

)
if ρ2 > 2−2R1(1+ P).

(28)

Proof: See Appendix F. �
In Figure 7 the achievable rates are compared with the cut-

set bound. It is shown that DF achieves the best rate when
the correlation coefficient ρ is low, i.e., when the destination
has low quality channel state information, while CF achieves

Fig. 7. Achievable rates and the cut-set upper bound for the multihop AWGN
relay channel with source-relay channel state information at the destination
for R1 = 1 and P = 0.3.

higher rates for higher values of ρ. It is seen that pDCF
achieves the best of the two transmission schemes. Note also
that for ρ = 0 DF meets the cut-set bound, while for ρ = 1
CF meets the cut-set bound.

Although this example proves the suboptimality of the DF
scheme for the channel model under consideration, it does
not necessarily lead to the suboptimality of the CF scheme
as we have constrained the auxiliary random variables to be
Gaussian.

V. COMPARISON WITH THE CUT-SET BOUND

In the examples considered in Section IV, we have seen that
for certain conditions, the choice of certain random variables
allows us to show that the cut-set bound and the capacity
coincide. For example, we have seen that for the parallel binary
symmetric MRC-D the proposed pDCF scheme achieves the
cut-set bound for δ ≥ h−1

2 (2 − R1), or Gaussian random
variables meet the cut-set bound for ρ = 0 or ρ = 1 in
the Gaussian MRC-D. An interesting question is whether the
capacity expression in Theorem 1 always coincides with the
cut-set bound or not; that is, whether the cut-set bound is tight
for the relay channel model under consideration.

To address this question, we consider the multihop binary
channel in (19) for Z ∼ Ber(1/2). The capacity C of this
channel is given in the following lemma.

Lemma 9: The capacity of the binary symmetric MRC-D
with YR = X1⊕N ⊕Z, where N ∼ Ber(δ) and Z ∼ Ber(1/2),
is achieved by CF and pDCF, and is given by

C = 1 − h2(δ � h−1
2 (1 − R1)). (29)

Proof: See Appendix G. �
From (20), the cut-set bound is given by RCS = 1 − h2(δ).

It then follows that in general the capacity is below the cut-set
bound. Note that for this setup, RDF = 0 and pDCF reduces
to CF, i.e., RpDCF = RCF. See Figure 8 for comparison of the
capacity with the cut-set bound for varying δ values.

CF suffices to achieve the capacity of the binary symmetric
MRC-D for Z ∼ Ber(1/2). While in general pDCF outper-
forms DF and CF, in certain cases these two schemes are
sufficient to achieve the cut-set bound, and hence, the capacity.
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Fig. 8. Achievable rates, capacity and cut-set upper bound for the multihop
binary relay channel with respect to δ for R1 = 0.25 and pz = 0.5.

For the ORC-D model introduced in Section II, the cut-set
bound is given by

RCS = R2 + min{R1, max
p(x1)

I (X1; YR|Z)}. (30)

Next, we present four cases for which the cut-set bound is
achievable, and hence, is the capacity:
Case 1) If I (Z; YR) = 0, the setup reduces to the class of

orthogonal relay channels studied in [3], for which
the capacity is known to be achieved by pDF.

Case 2) If H (YR|X1 Z) = 0, i.e., YR is a deterministic
function of X1 and Z , the capacity, given by

R2 + min{R1, max
p(x1)

I (X1; YR |Z)},
is achievable by CF.

Case 3) If maxp(x1) I (X1; YR) ≥ R1, the capacity, given by
C = R2 + R1, is achievable by pDF.

Case 4) Let arg maxp(x1) I (X1; YR|Z) = p̄(x1). If R1 >

H (ȲR|Z) for ȲR induced by p̄(x1), the capacity,
given by R2 + I (X̄1; ȲR |Z), is achievable by CF.

Proof: See Appendix H. �
These cases can be observed in the examples from

Section IV. For example, in the Gaussian MRC-D with ρ = 0,
YR is independent of Z , and thus, DF meets the cut-set bound
as stated in Case 1. Similarly, for ρ = 1 CF meets the cut-
set bound since YR is a deterministic function of X R and Z ,
which corresponds to Case 2.

For the parallel binary symmetric MRC-D in Section IV-A,
pDCF achieves the cut-set bound if δ ≥ h−1

2 (2 − R1) due
to the following reasoning. Since Y 1

R is independent of X1
1,

from Case 1, DF should achieve the cut-set bound. Once X1
1

is decoded, the available rate to compress Y2 is given by
R1 − I (X1; Y1) = R1 − 1 + h2(δ), and the entropy of Y2
conditioned on the channel state at the destination is given
by H (Y2|Z) = 1 − h2(δ). For δ ≥ h−1

2 (2 − R1) we have
R1 − I (X1; Y1) ≥ H (Y2|Z). Therefore the relay can compress
Y2 losslessly, and transmit to the destination. This corresponds
to Case 4. Thus, the capacity characterization in the parallel
binary symmetric MRC-D is due to a combination of Case 1
and Case 4.

VI. CONCLUSION

We have considered a class of orthogonal relay channels, in
which the channels connecting the source to the relay and the
destination, and the relay to the destination, depend on a state
sequence, known at the destination. We have characterized
the capacity of this class of relay channels, and shown that
it is achieved by the partial decode-compress-and-forward
(pDCF) scheme. This is the first three-terminal relay channel
model for which the pDCF is shown to be capacity achieving
while partial decode-and-forward (pDF) and compress-and-
forward (CF) schemes are both suboptimal in general. We have
also shown that, in general, the capacity of this channel is
below the cut-set bound.

APPENDIX A
PROOF OF LEMMA 1

In the rate expression and joint pmf in Theorem 2, we set
Xn = (Xn

1 , Xn
2 ), Y n = (Y n

1 , Y n
2 , Zn), V = ∅, and generate

Xn
R and Xn

2 independent of the rest of the random variables
with distributions p∗(xR) and p∗(x2), which maximize the
mutual information terms in (5), respectively. Under this set
of distributions we have

I (X; Y ŶR |X RU) = I (X1 X2; Y1Y2ŶR Z |X R, U)

(a)= I (X1 X2; Y2ŶR |X RU Z)

(b)= I (X2; Y2|Z) + I (X1; ŶR |U Z)

= R2 + I (X1; ŶR |U Z),

I (U ; YR |X R V ) = I (U ; YR |X R)
(c)= I (U ; YR),

I (X X R; Y ) = I (X1 X2 X R; Y1Y2 Z)

(d)= I (X2 X R; Y1Y2|Z)

(e)= I (X R; Y1) + I (X2; Y2|Z) = R1+ R2,

I (ŶR; YR|X X RUY ) = I (ŶR; YR|X R X1 X2UY1Y2 Z)

( f )= I (ŶR; YR|X R X1 X2UY2 Z)

(g)= I (ŶR; YR|X1U Z),

I (ŶR; YR |Y X RU) = I (ŶR; YR|Y1Y2 Z X RU)

(h)= I (ŶR; YR|U Z),

I (X R; Y |V ) = I (X R; Y1Y2 Z) = I (X R; Y1) = R1,

where (a) is due to the Markov chain (X1 X2) − X R − Y1;
(b), (c), (e), ( f ), (g), (h) are due to the independence of
(U, X1) and X R , and (d) is due to the Markov chain (Y1Y2)−
(X2 X R Z) − X1.

Then, (8) reduces to the following rate

R = sup
P

min{I (U ; YR) + R2 + I (X1; ŶR |U Z), (31)

R2 + R1 − I (ŶR; YR|X1U Z)},
s.t. R1 ≥ I (ŶR; YR |U Z). (32)

Focusing on the joint distributions in P such that the minimum
in R is achieved for the first argument, i.e.,

R1 − I (ŶR; YR |X1U Z) ≥ I (U ; YR) + I (X1; ŶR |U Z),
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and using the chain rule for the mutual information, the rate
achievable by pDCF is lower bounded by

R ≥ sup
P

R2 + I (U ; YR) + I (X1; ŶR |U Z)

s.t. R1 ≥ I (U ; YR) + I (X1YR; ŶR |U Z), (33)

R1 ≥ I (ŶR; YR |U Z). (34)

From (33), we have

R1 ≥ I (U ; YR) + I (X1YR; ŶR |U Z)
(a)= I (U ; YR) + I (ŶR; YR |U Z)

≥ I (ŶR; YR |U Z), (35)

where (a) is due to the Markov chain ŶR − (UYR) − (X1 Z).
Hence, (33) implies (34), i.e., the latter condition is redundant,
and R ≥ C. Therefore the capacity expression C in (7) is
achievable by pDCF. This concludes the proof.

APPENDIX B
PROOF OF LEMMA 2

Consider any sequence of (2nR, n, νn) codes such that
limn→∞ νn → 0. We need to show that R ≤ Rup .

Let us define Ui � (Y i−1
R1 Xn

1i+1 Zn\i ) and ŶRi � (Y n
1i+1).

For such ŶRi and Ui , the following Markov chain holds

ŶRi − (Ui , YRi ) − (X1i , X2i , Zi , Y1i , Y2i , X Ri ). (36)

From Fano’s inequality, we have

H (W |Y n
1 Y n

2 Zn) ≤ nεn, (37)

such that εn → 0 as n → ∞.
First, we derive the following set of inequalities related to

the capacity of the source-destination channel.

n R = H (W )
(a)= I (W ; Y n

1 Y n
2 |Zn) + H (W |Y n

1 Y n
2 Zn)

(b)≤ I (Xn
1 Xn

2 ; Y n
1 Y n

2 |Zn) + nεn, (38)

where (a) follows from the independence of Zn and W ; and
(b) follows from Fano’s inequality in (37).

We also have the following inequalities:

I (Xn
2 ; Y n

2 |Zn) =
n∑

i=1

H (Y2i |ZnY i−1
21 ) − H (Y2i |ZnY i−1

21 Xn
2 )

(a)≤
n∑

i=1

H (Y2i |Zi) − H (Y2i |Zi X2i )

=
n∑

i=1

I (X2i ; Y2i |Zi )

(b)= nI (X2Q ′ ; Y2Q ′ |Z Q ′ Q′)
(c)≤ nI (X2Q ′ ; Y2Q ′ |Z Q ′)
(d)≤ n R2, (39)

where (a) follows since conditioning reduces entropy, (b)
follows by defining Q′ as a uniformly distributed random
variable over {1, . . . , n} and (X2Q ′, Y2Q ′ , Z Q ′) as a pair of

random variables satisfying Pr{X2i = x2, Y2i = y2, Zi = z} =
Pr{X2Q ′ = x2, Y2Q ′ = y2, , Z Q ′ = z|Q = i} for i = 1, . . . , n,
(c) follows from the Markov chain relation Q′ − X2Q ′ − Y2Q ′
and (d) follows from the definition of R2 in (5). Following
the same steps, we obtain

I (Xn
R; Y n

1 |Zn) ≤ n R1. (40)

Then, we can bound the achievable rate as,

n R = I (W ; Y n
1 Y n

2 Zn) + H (W |Y n
1 Y n

2 Zn)
(a)≤ I (W ; Y n

1 Y n
2 Zn) + nεn

(b)= I (W ; Y n
2 |Zn) + I (W ; Y n

1 |Y n
2 Zn) + nεn

(c)≤ I (Xn
2 ; Y n

2 |Zn) + I (W ; Y n
1 |Y n

2 Zn) + nεn

(d)≤ n R2 + H (Y n
1 |Y n

2 Zn) − H (Y n
1 |W Zn) + nεn

(e)≤ n R2 + H (Y n
1 |Zn) − H (Y n

1 |W Xn
1 Zn) + nεn

( f )= n R2 + I (Xn
1 ; Y n

1 |Zn) + nεn

(g)≤ n R2 + H (Xn
1) − H (Xn

1 |Y n
1 Zn) + nεn

= n R2 +
n∑

i=1

H (X1i |Xn
1i+1) − H (Xn

1 |Y n
1 Zn) + nεn

(h)≤ n R2 +
n∑

i=1

[
I (Y i−1

R1 Zn\i ; YRi )

+ H (X1i|Xn
1i+1)

]
− H (Xn

1 |Y n
1 Zn) + nεn

= n R2 +
n∑

i=1

[
I (Y i−1

R1 Zn\i Xn
1i+1; YRi )

− I (Xn
1i+1; YRi |Y i−1

R1 Zn\i ) + H (X1i |Y i−1
R1 Zn\i Xn

1i+1)

+ I (X1i ; Y i−1
R1 Zn\i |Xn

1i+1)

]
− H (Xn

1 |Y n
1 Zn) + nεn

(i)= n R2 +
n∑

i=1

[
I (Y i−1

R1 Zn\i Xn
1i+1; YRi )

+ H (X1i|Y i−1
R1 Zn\i Xn

1i+1)

]
− H (Xn

1 |Y n
1 Zn) + nεn

= n R2 +
n∑

i=1

[
I (Ui ; YRi ) + H (X1i |Ui )

]

− H (Xn
1 |Y n

1 Zn) + nεn

( j )≤ n R2 +
n∑

i=1

[
I (Ui ; YRi ) + H (X1i |Ui )

− H (X1i|Ui Zi ŶRi )

]
+ nεn

(k)= n R2 +
n∑

i=1

[
I (Ui ; YRi ) + I (X1i ; ŶRi |Ui Zi )

]
+ nεn,

where (a) is due to Fano’s inequality; (b) is due to the chain
rule and the independence of Zn from W ; (c) is due to the
data processing inequality; (d) is due to the Markov chain
relation Y n

2 −(W, Zn)−Y n
1 and (39); (e) is due to the fact that

conditioning reduces entropy, and that Xn
1 is a deterministic
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function of W ; ( f ) is due to the Markov chain relation
Y n

1 − Xn
1 − W ; (g) is due to the independence of Zn and Xn

1 ;
(i) follows because

n∑

i=1

I (X1i ; Y i−1
R1 Zn\i |Xn

1i+1)
(l)=

n∑

i=1

I (X1i ; Y i−1
R1 |Xn

1i+1 Zn\i )

(m)=
n∑

i=1

I (Xn
1i+1; YRi |Y i−1

R1 Zn\i ),

where (l) is due to the independence of Zn and Xn
1 ; and

(m) is the conditional version of Csiszár’s equality [24].
Inequality ( j) is due to the following bound,

H (Xn
1 |Y n

1 Zn) =
n∑

i=1

H (X1i |Xn
1i+1 ZnY n

1 )

≥
n∑

i=1

H (X1i |Y i−1
R1 Xn

1i+1 ZnY n
1 )

(n)=
n∑

i=1

H (X1i |Y i−1
R1 Xn

1i+1 ZnY n
1i+1)

=
n∑

i=1

H (X1i |Ui Zi ŶRi ), (41)

where (n) is follows from the Markov chain rela-
tion X1i − (Y i−1

R1 Xn
1i+1 ZnY n

1i+1) − Y i
11, and noticing that

X Ri = fr,i (Y
i−1
R1 ). Finally, (k) is due to the fact that Zi

independent of (X1i , Ui ).
We can also obtain the following sequence of inequalities

n R1 + n R2
(a)≥ I (Xn

R; Y n
1 |Zn) + I (Xn

2 ; Y n
2 |Zn)

(b)≥ H (Y n
2 |Zn) − H (Y n

2 |Xn
2 Zn)

+ H (Y n
1 |Y n

2 Zn) − H (Y n
1 |Xn

R Zn)

= H (Y n
1 Y n

2 |Zn) − H (Y n
2 |Xn

2 Zn) − H (Y n
1 |Xn

R Zn)

(c)= H (Y n
1 Y n

2 |Zn) − H (Y n
2 |Xn

1 Xn
2 Y n

R Zn)

− H (Y n
1 |Xn

R Xn
1 Xn

2 Y n
RY n

2 Zn)

(d)≥ H (Y n
1 Y n

2 |Zn) − H (Y n
1 Y n

2 |Xn
1 Xn

2 Y n
R Zn)

= I (Y n
1 Y n

2 ; Xn
1 Xn

2 Y n
R |Zn)

= I (Xn
1 Xn

2 ; Y n
1 Y n

2 |Zn) + I (Y n
1 Y n

2 ; Y n
R|Xn

1 Xn
2 Zn)

(e)≥ n R + I (Y n
1 Y n

2 ; Y n
R |Xn

1 Xn
2 Zn) − nεn

( f )= n R + I (Y n
1 ; Y n

R|Xn
1 Zn) − nεn

= n R +
n∑

i=1

I (Y n
1 ; YRi |Xn

1 Y i−1
R1 Zn) − nεn

≥ n R +
n∑

i=1

I (Y n
1i+1; YRi |Xn

1 Y i−1
R1 Zn) − nεn

(g)≥ n R +
n∑

i=1

I (Y n
1i+1; YRi |Xn

1i Y
i−1
R1 Zn) − nεn

= n R +
n∑

i=1

I (ŶRi ; YRi |X1iUi Zi ) − nεn,

where (a) follows from (39) and (40); (b) is due to the fact that
conditioning reduces entropy; (c) is due to the Markov chains
Y n

2 − (Xn
2 Zn) − (Xn

1 Y n
R) and Y n

1 − (Xn
R Zn) − (Xn

1 Xn
2 Y n

RY n
2 );

(d) follows since conditioning reduces entropy; (e) is due
to the expression in (38); ( f ) is due to the Markov chain
(Y n

RY n
1 ) − (Xn

1 Zn) − (Xn
2 Y n

2 ) and; (g) is due to the Markov

chain (Y n
1i+1) − (Xn

1i Y
i−1
R1 Zn) − Xi−1

11 .
A single letter expression can be obtained by using the usual

time-sharing random variable arguments. Let Q be a time
sharing random variable uniformly distributed over {1, . . . , n},
independent of all the other random variables. Also, define a
set of random variables (X1Q, YRQ , UQ , ŶRQ , Z Q) satisfying

Pr{X1Q = x1, YRQ = yR, UQ = u, ŶRQ = ŷR, Z Q = z|Q = i}
= Pr{X1i = x1, YRi = yR, Ui = u, ŶRi = ŷD, Zi = z}

for i = 1, . . . , n. (42)

Define U � (UQ , Q), ŶR � ŶRQ , X1 � X1Q , YRQ � YR and
Z � Z Q . We note that the pmf of the tuple (X1, YR, U, ŶR , Z)
belongs to P in (6) as follows:

p(u, x1, yR, z, ŷR)

= p(q, uQ, x1Q, yRQ, zQ , ŷRQ)

= p(q, uQ, x1Q)p(zQ yRQ ŷRQ |q, uQ x1Q)

= p(q, uQ, x1Q)p(zQ |q, uQ, x1Q)

× p(yRQ, ŷRQ |q, uQ, x1Q, zQ)
(a)= p(q, uQ, x1Q)p(z)p(yRQ|q, uQ, x1Q, zQ)

· p(ŷRQ|q, uQ, x1Q, zQ , yRQ)
(b)= p(q, uQ, x1Q)p(z)p(yR|x1, z)

× p(ŷRQ|q, uQ, x1Q, zQ , yRQ)
(c)= p(q, uQ, x1Q)p(z)p(yR|x1, z)p(ŷRQ |q, uQ, yRQ)

= p(u, x1)p(z)p(yR|x1, z)p(ŷR|u, yR),

where (a) follows since the channel state Zn is i.i.d; and
thus p(zQ |q, uQ, x1Q) = p(zQ |q) = p(z); (b) follows since
p(yRQ|q, uQ, x1Q, zQ) = p(yRQ|q, x1Q, zQ) = p(yR|x1, z);
(c) follows from the Markov chain in (36).

Then, we get the single letter expression,

R ≤ R2 + 1

n

n∑

i=1

[I (Ui ; YRi ) + I (X1i ; ŶRi |Ui Zi )] + εn

= R2 + I (UQ; YRQ |Q) + I (X1Q; ŶRQ |UQ Z Q Q) + εn

≤ R2 + I (UQ Q; YRQ) + I (X1Q; ŶRQ Q|UQ Z Q) + εn

= R2 + I (U ; YR) + I (X1; ŶR |U Z) + εn,

and

R1 + R2 ≥ R + 1

n

n∑

i=1

I (ŶRi ; YRi |X1iUi Zi ) − nεn

= R + I (ŶRQ ; YRQ |X1QUQ Z Q Q) − nεn

= R + I (ŶR; YR |X1U Z) − nεn .

The cardinality of the bounds on the alphabets of U and ŶR

can be found using the usual techniques [24]. This completes
the proof.
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APPENDIX C
PROOF OF LEMMA 3

Now, we will show that the expression of Rup in (9) is
equivalent to the expression C in (7). First we will show that
C ≤ Rup . Consider the subset of pmf’s in P such that

R1 + R2 − I (ŶR; YR |X1U Z) (43)

≥ R2 + I (U ; YR) + I (X1; ŶR|U Z), (44)

holds. Then, similarly to (35) in Appendix A this condition is
equivalent to

R1 ≥ I (U ; YR) + I (YR; ŶR |U Z). (45)

Hence, we have C ≤ Rup .
Then, it remains to show that C ≥ Rup . As R2 can be

extracted from the supremum, it is enough to show that,
for each (X1, U, Z , YR, ŶR) tuple with a joint pmf pe ∈ P
satisfying

R(pe) ≤ I (U ; YR) + I (X1; ŶR|U Z),

where R(pe) � R1 − I (ŶR; YR |X1U Z), (46)

there exist random variables (X∗
1, U∗, Z , Y ∗

R, Ŷ ∗
R) with joint

pmf p∗
e ∈ P that satisfy

R(pe) = I (U∗; YR) + I (X∗
1 ; Ŷ ∗

R|U∗Z) and

R(pe) ≤ R1 − I (Ŷ ∗
R; YR|X∗

1U∗Z). (47)

This argument is proven next.
Let B denote a Bernoulli random variable with parameter

λ ∈ [0, 1], i.e., B = 1 with probability λ, and B = 0 with
probability 1 − λ. We define the triplets of random variables:

(U
′
, X

′
1, Ŷ

′
R) =

{
(U, X1, ŶR) if B = 1,

(X1, X1,∅) if B = 0,
(48)

and

(U
′′
, X

′′
1, Ŷ

′′
R) =

{
(X1, X1,∅) if B = 1,

(∅,∅,∅) if B = 0.
(49)

We first consider the case R(pe) > I (X1; YR). Let U∗ =
(U

′
, B), X∗

1 = X
′
1, Ŷ ∗

R = (Ŷ
′
R, B). For λ = 1,

I (U∗; YR) + I (X∗
1; Ŷ ∗

R |U∗Z) = I (U ; YR) + I (X1; ŶR |U Z)

> R(pe), (50)

and for λ = 0,

I (U∗; YR) + I (X∗
1 ; Ŷ ∗

R|U∗Z) = I (X1; YR)

< R(pe). (51)

As I (U∗; YR)+ I (X∗
1 ; Ŷ ∗

R |U∗Z) is a continuous function of λ,
by the intermediate value theorem, there exists a λ ∈ [0, 1]
such that I (U∗; YR) + I (X∗

1; Ŷ ∗
R |U∗Z) = R(pe). We denote

the corresponding joint distribution by p∗
e .

We have

I (Ŷ ∗
R; YR|X∗

1U∗Z) = I (Ŷ
′
R; YR |X ′

1U
′
Z B)

= λI (ŶR; YR |X1U Z)

≤ I (ŶR; YR |X1U Z), (52)

which implies that p∗
e satisfies (47) since

R(pe) = R1 − I (ŶR; YR |X1U Z)

≤ R1 − I (Ŷ ∗
R; YR |X∗

1U∗Z). (53)

Next we consider the case R(pe) ≤ I (X R; Y1). We define
U∗ = (U

′′
, B), X∗

1 = X
′′
1 and Ŷ ∗

R = (Ŷ
′′
R, B). Then, for λ = 1,

I (U∗; YR) + I (X∗
1 ; Ŷ ∗

R|U∗Z) = I (X1; YR)

≥ R(pe),

and for λ = 0,

I (U∗; YR) + I (X∗
1; Ŷ ∗

R |U∗Z) = 0

< R(pe). (54)

Once again, as I (U∗; YR)+ I (X∗
1 ; Ŷ ∗

R|U∗Z) is a continuous
function of λ, by the intermediate value theorem, there exists
a λ ∈ [0, 1] such that I (U∗; YR) + I (X∗

1 ; Ŷ ∗
R|U∗Z) = R(pe).

Again, we denote this joint distribution by p∗
e . On the other

hand, we have I (Ŷ ∗
R; YR|X∗

1U∗Z) = 0, which implies that

R(pe) = R1 − I (ŶR; YR |X1U Z)

≤ R1

= R1 − I (Ŷ ∗
R; YR |X∗

1U∗Z). (55)

That is, p∗
e also satisfies (47).

We have shown that for any joint pmf pe ∈ P satisfy-
ing (46), there exist another joint pmf, p∗

e , that satisfies (47).
For a distribution satisfying (47) we can write

R1 > I (U∗; YR) + I (X∗
1; Ŷ ∗

R |U∗Z) + I (Ŷ ∗
R; YR |X∗

1U∗Z)

= I (U∗; YR) + I (YR X∗
1; Ŷ ∗

R |U∗Z)
(a)= I (U∗; YR) + I (Ŷ ∗

R; YR|U∗Z)

where (a) is due to Markov chain X∗
1 − (YR ZU∗) − Ŷ ∗

R . This
concludes the proof.

APPENDIX D
PROOF OF LEMMA 4

Before deriving the maximum achievable rate by CF in
Lemma 4, we provide some definitions that will be used in
the proof.

Let X and Y be a pair of discrete random variables, where
X = {1, 2, . . . , n} and Y = {1, 2, . . . , m}, for n, m < ∞. Let
pY ∈ �m denote the distribution of Y , where �k denotes
the (k − 1)-dimensional simplex of probability k-vectors.
We define TXY as the n × m stochastic matrix with entries
TXY ( j, i) = Pr{X = j |Y = i}. Note that the joint distribution
p(x, y) is characterized by TXY and pY .

Next, we define the conditional entropy bound from [25],
which lower bounds the conditional entropy between two
variables. Note the relabeling of the variables in [25] to fit
our model.

Definition 1 (Conditional Entropy Bound): Let pY ∈ �m

be the distribution of Y and TXY denote the channel matrix
relating X and Y . Then, for q ∈ �m and 0 ≤ s ≤ H (Y ),
define the function

FTXY (q, s) � inf
p(w|y): X−Y−W,
H(Y |W )=s, pY =q.

H (X |W ). (56)
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That is, FTXY (q, s) is the infimum of H (X |W ) given a
specified distribution q and the value of H (Y |W ). Many prop-
erties of FTXY (q, s) are derived in [25], such as its convexity
on (q, s) [25, Th. 2.3] and its non-decreasing monotonicity
in s [25, Th. 2.5].

Consider a sequence of N random variables
Y = (Y1, . . . , YN ) and denote by qi the distribution
of Yi , for i = 1, . . . , N , by q(N) the joint distribution

of Y and by q � 1
N

∑N
i=1 qi the average distribution. Note

that Y1, . . . , YN can have arbitrary correlation. Define the
sequence X = (X1, . . . , X N ), in which Xi , i = 1, . . . , N , is
jointly distributed with each Yi through the stochastic matrix
TXY and denote by T (N)

XY the Kronecker product of N copies
of the stochastic matrix TXY .

Then, the theorem given in [25, Th. 2.4] can be straight-
forwardly generalized to non i.i.d. sequences as given in the
following lemma.

Lemma 10: For N ∈ Z+, and 0 ≤ Ns ≤ H (Y), we have

F
T (N)

XY
(q(N), Ns) ≥ N FTXY (q, s), (57)

where equality holds for i.i.d. Yi components following q.
Proof: Let W, X, Y be a Markov chain, such that

H (Y|W ) = Ns. Then, using the standard identity we have

H (Y|W ) =
N∑

k=1

H (Yk|Yk−1
1 , W ), (58)

H (X|W ) =
N∑

k=1

H (Xk|Xk−1
1 , W ). (59)

Letting sk = H (Yk|Yk−1
1 , W ), we have

1

N

N∑

k=1

sk = s. (60)

Also, from the Markov chain Xk − (Yk−1
1 , W ) − Xk−1

1 , we
have

H (Xk|Xk−1
1 , W ) ≥ H (Xk|Yk−1

1 , Xk−1
1 , W ) (61)

= H (Xk|Yk−1
1 , W ). (62)

Applying the conditional entropy bound in (56) we have

H (Xk|Yk−1
1 , W ) ≥ FTXY (qk, sk). (63)

Combining (59), (61) and (63) we have

H (X|W ) ≥
N∑

k=1

FTXY (qk , sk) ≥ N FTXY (q, s),

where the last inequality follows from the convexity of
FT (q, s) in q and s and (60).

If we let W, X, Y be N independent copies of the
random variables W, X, Y , that achieve FTXY (q, s), we have
H (Y|W ) = Ns and H (X|W ) = F

T (N)
XY

(qN ) = N FTXY (q, s).

Therefore, F
T (N)

XY
(qN ) ≤ N FTXY (q, s), and the equality holds

for i.i.d. components of Y. �
Now, we look into the binary symmetric channel Y = X⊕N

where N ∼ Ber(δ). Due to the binary modulo-sum operation,

we have X = Y ⊕ N , and we can characterize the channel
TXY of this model as

TXY =
[

1 − δ δ
δ 1 − δ

]
. (64)

When Y and X are related through channel TXY in (64),
FTXY (q, s) is characterized as follows [25].

Lemma 11: Let Y ∼ Ber(q), i.e., q = [q, 1 − q], and TXY

be given as in (64). Then the conditional entropy bound is

FTXY (q, s) = h2(δ � h−1
2 (s)), for 0 ≤ s ≤ h2(q).

In the following, we use the properties of FTXY (q, s) to
derive the maximum rate achievable by CF in the parallel
binary symmetric MRC-D. From (17), we have

I (Y 1
R, Y 2

R; ŶR |Z) = I (X1
1 ⊕ N1 ⊕ Z , X2

1 ⊕ N2; ŶR|Z)

= I (X1
1 ⊕ N1, X2

1 ⊕ N2; ŶR|Z).

Let us define Ȳ 1
R � X1

1 ⊕ N1 and ȲR � (Ȳ 1
R, Y 2

R), and the
channel input X � (X1

1, X2
1). Note that the distribution of ȲR ,

given by q(2), determines the distribution of X via T (2)
XY , the

Kronecker product of TXY in (64). Then, we can rewrite the
achievable rate for CF in (17) as follows

RCF = max
p(x)p(z)p(ȳR|x)p( ŷR|ȳR ,z)

I (X, ŶR |Z)

s.t. R1 ≥ I (ȲR; ŶR|Z). (65)

Next, we derive a closed form expression for RCF. First,
we note that if R1 ≥ 2, we have H (ȲR) ≤ R1 and
RCF = 2(1 − h(δ)), i.e., CF meets the cut-set bound.

For fixed q(2), if H (ȲR) ≤ R1 ≤ 2, the constraint in (65)
is satisfied by any ŶR , and can be ignored. Then, due to
the Markov chain X − ȲR − ŶR Z , and the data processing
inequality, the achievable rate is upper bounded by

RCF ≤ I (X, ȲR) = H (ȲR) − 2h(δ) ≤ R1 − 2h(δ). (66)

For R1 ≤ H (ȲR) ≤ 2, the achievable rate by CF is upper
bounded as follows.

RCF
(a)= max

p(x)p(z)p(ȳR|x)p( ŷR|ȳR ,z)
H (X) − H (X|ZŶR)

s.t. H (ȲR|ZŶR) ≥ H (ȲR) − R1
(b)≤ max

p(x)p(ȳR|x)p(w|ȳR)
H (X) − H (X|W )

s.t. H (ȲR|W ) ≥ H (ȲR) − R1

= max
p(x)p(ȳR|x)

[H (X) − min
p(w|ȳR)

H (X|W )]
s.t. H (ȲR|W ) ≥ H (ȲR) − R1

(c)= max
p(x)p(ȳR|x),0≤s≤H(ȲR)

[H (X) − F
T (2)

XY
(q(2), s)]

s.t. s ≥ H (ȲR) − R1
(d)= max

p(x)p(ȳR|x)
[H (X) − F

T (2)
XY

(q(2), H (ȲR) − R1)]
(e)≤ max

p(x)p(ȳR|x)
[H (X) − 2FTXY (q, (H (ȲR) − R1)/2)],

where (a) follows from the independence of Z from
X and ȲR ; (b) follows since optimizing over W can only
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increase the value compared to optimizing over (Z , ŶR);
(c) follows from the definition of the conditional entropy
bound in (56); (d) follows from the nondecreasing monotonic-
ity of F

T (2)
XY

(q(2), s) in s; and (e) follows from Lemma 10, and

q � [q, 1 − q] = 1
2 (q1 + q2) is the average distribution of Y.

Now, we lower bound H (ȲR). Since conditioning reduces
entropy, we have H (ȲR) ≥ H (ȲR|N1 N2) = H (X), and then
we can lower bound H (ȲR) as follows:

max{H (X), R1} ≤ H (ȲR) ≤ 2. (67)

Let ν � (max{H (X), R1} − R1)/2. Then, we have

RCF
(a)≤ max

p(x)p(ȳR|x)
[H (X) − 2FTXY (q, ν)],

(b)= max
p(x)p(ȳR|x)

[H (X) − 2h2(δ � h−1
2 (ν))]

s.t. 0 ≤ ν ≤ h2(q)
(c)≤ max

p(x)
[H (X) − 2h2(δ � h−1

2 (ν))]
s.t. R1 ≤ max{H (X), R1} ≤ 2 + R1

(d)= max
p(x)

[H (X) − 2h2(δ � h−1
2 (max{H (X), R1}− R1)/2))]

s.t. max{H (X), R1} ≤ 2
(e)= max

0≤α≤1
[2α − 2h2(δ � h−1

2 ((max{2α, R1} − R1)/2))]
s.t. max{R1, 2α} ≤ 2, (68)

where (a) follows from (67) and FTXY (q, s) being non-
decreasing in s; equality (b) follows from the definition of
FTXY (q, s) for the binary symmetric channel; (c) follows since
h2(q) ≤ 1, and we are enlarging the optimization domain;
(d) follows since there is no loss in generality by reducing the
optimization set, since max{H (X), R1} ≥ R1 and from (67),
any (X, ȲR) following p(x, ȳR) satisfy max{H (X), R1} ≤ 2;
and (e) follows from defining H (X) � 2α, for 0 ≤ α ≤ 1.

Then, for 2α ≤ R1, we have

RCF ≤ max
0≤α≤R1/2

[2α − 2h2(δ)] = R1 − 2h2(δ), (69)

and for 2α > R1, we have

RCF ≤ max
R1/2<α≤1

[2α − 2h2(δ � h−1
2 (α − R1/2))]. (70)

Now, we solve (70). Let us define f (u) � h2(δ � h−1
2 (u))

for 0 ≤ u ≤ 1. Then, we have the following lemma from [26].
Lemma 12 [26]: Function f (u) is convex for 0 ≤ u ≤ 1.
We define g(α) � α − h2(δ � h−1

2 (α − R1/2)), such that
RCF ≤ maxR1/2<α≤1 2g(α). We have that g(α) is concave
in α, since is a shifted version by α, which is linear, of the
composition of the concave function − f (u) and the affine
function α − R1/2.

Proposition 1: g(α) is monotonically increasing for
R1/2 ≤ α ≤ 1 + R1/2.

Proof: Using the chain rule for composite functions, we
have

d2g(α)

dα2 = − f ′′(α − R1/2), (71)

where f ′′(u) � d2 f/du2(u).

Since g(α) is convex, and is defined over a convex region,
it follows that its unique maximum is achieved either for
f ′′(α − R1/2) = 0, or at the boundaries of the region.
It is shown in [26, Lemma 2] that f ′′(u) > 0 for 0 < u < 1.
Therefore, the maximum is achieved either at u = 0 or at
u = 1, or equivalently, for α = R1/2 or α = 1 + R1/2.
Since g(R1/2) = R1/2 − h2(δ) and g(1 + R1/2) = R1/2,
i.e., g(R1/2) < g(1 + R1/2), it follows that g(α) is monoton-
ically increasing in α for R1/2 ≤ α ≤ 1 + R1/2. �

From Proposition 1 if follows that for R1/2 ≤ α ≤ 1, g(α)
achieves its maximum at α = 1. Then, for 2α > R1, we have

RCF ≤ 2(1 − h2(δ � h−1
2 (1 − R1/2))). (72)

Thus, from (69) and (72), for R1 ≤ H (ȲR) we have

RCF ≤ 2 max{R1/2 − h2(δ), 1 − h2(δ � h−1
2 (1 − R1/2))}

= 2(1 − h2(δ � h−1
2 (1 − R1/2))), (73)

where the equality follows from Proposition 1 by noting that
the first element in the maximum coincides with g(R1/2) =
R1/2 − h2(δ), and the second one coincides with g(1).

Finally, RCF is upper bounded by the maximum over the
joint distributions satisfying H (ȲR) ≤ R1 given in (66),
and the upper bound for the joint distributions satisfying
R1 ≤ H (ȲR) given in (73). Since (66) coincides with
g(R1/2), (73) serves as an upper bound on RCF when
R1 ≤ H (ȲR).

Next, we show that the upper bound in (73) is achievable
by considering the following variables

X1
1 ∼ Ber(1/2), X2

1 ∼ Ber(1/2), ŶR = (Ŷ 1
R, Ŷ 2

R)

Ŷ 1
R = Y 1

R ⊕ Q1, Q1 ∼ Ber(h−1
2 (1 − R1/2)).

Ŷ 2
R = Y 2

R ⊕ Q2, Q2 ∼ Ber(h−1
2 (1 − R1/2)).

Let Qi ∼ Ber(ν) for i = 1, 2. Then from the constraint
in (17) we have

I (Y 1
R , Y 2

R; ŶR|Z)

= H (ŶR|Z) − H (ŶR|Y 1
RY 2

R Z)

= H (X1
1 ⊕ N1 ⊕ Q1, X2

1 ⊕ N2 ⊕ Q2) − H (Q1, Q2)
(a)= 2 − 2h2(ν),

where (a) follows since Xi
1 ∼ Ber(1/2), i = 1, 2 and from

the independence of Q1 and Q2. We have 2h2(ν) ≥ 2 − R1,
and thus, ν ≥ h−1

2 (1 − R1/2).
Then, the achievable rate in (17) is given by

I (X; ŶR |Z) = H (ŶR|Z) − H (ŶR|XZ)

= H (X1
1 ⊕ N1 ⊕ Q1, X2

1 ⊕ N2 ⊕ Q2)

− H (N1 ⊕ Q1, N2 ⊕ Q2)

= 2 − 2h(δ � ν)

≤ 2 − 2h2(δ � h−1
2 (1 − R1/2)),

where the last inequality follows from the bound on ν. This
completes the proof.
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APPENDIX E
PROOF OF LEMMA 5

From (7), the achievable rate for the proposed pDCF scheme
is given by

RpDCF = I (X1
1; Y 1

R) + I (X2
1; ŶR |Z)

s.t. R1 ≥ I (X1
1; Y 1

R) + I (Y 2
R; ŶR |Z).

First, we note that the constraint is always satisfied for the
choice of variables:

I (X1
1; Y 1

R) + I (Y 2
R; ŶR |Z)

= H (Y 1
R) − H (N1) + H (X2

1 ⊕ N2 ⊕ Q) − H (Q)

= 1 − h2(δ) + 1 − h2(h
−1
2 (2 − h(δ) − R1))

= R1, (74)

where H (Y 1
R) = 1 since X1

1 ∼ Ber(1/2) and H (X2
1 ⊕

N2 ⊕ Q) = 1 since X2
1 ∼ Ber(1/2). Then, similarly the

achievable rate is given by

RpDCF = I (X1
1; Y 1

R) + I (X2
1; ŶR |Z)

= H (Y 1
R) − H (N1) + H (X2

1 ⊕ N2 ⊕ Q) − H (V ⊕Q)

= 1 − h2(δ) + 1 − h2(δ � h−1
2 (2 − h(δ) − R1)),

which completes the proof.

APPENDIX F
PROOF OF LEMMA 8

By evaluating (7) with the considered Gaussian random
variables, we get

R = 1

2
log

(
1 + αP

ᾱP + 1

) (
1 + ᾱP

(1 − ρ2) + σ 2
q

)

s.t. R1 ≥ 1

2
log

(
1 + αP

ᾱP + 1

) (
1 + ᾱP + (1 − ρ2)

σ 2
q

)
.

We can rewrite the constraint on R1 as,

σ 2
q ≥ f (α) � (P + 1)(ᾱP + 1 − ρ2)

22R1(ᾱP + 1) − (P + 1)
. (75)

Since R is increasing in σ 2
q , it is clear that the opti-

mal σ 2
q is obtained by σ 2

q = f (α), where α is cho-
sen such that f (α) ≥ 0. It is easy to check that
f (α) ≥ 0 for

α ∈
[

0, min

{
(1 − 2−2R1)

(
1 + 1

P

)
, 1

}]
. (76)

Now, we substitute σ 2
q = f (α) in (75), and write the

achievable rate as a function of α as

R(α) = 1

2
log G(α), (77)

where

G(α) �
(

1 + αP

ᾱP + 1

) (
1 + ᾱP

(1 − ρ2) + f (α)

)

= 22R1(1 + P)(1 − ρ2 + ᾱP)

(1 − ρ2)22R1(1 + ᾱP) + ᾱP(1 + P)
. (78)

We take the derivative of G(α) with respect to α:

G′(α) �
22R1 P(1 + P)

(
1 − ρ2

) (
P + 1 − 22R1ρ2

)
[
P(1 + P)ᾱ + 22R1(1 + ᾱP)

(
1 − ρ2

)]2 .

We note that if ρ2 ≥ 2−R1(P +1), then G′(α) < 0, and hence,
G(α) is monotonically decreasing. Achievable rate R is max-
imized by setting α∗ = 0. When ρ2 < 2−R1(P + 1), we have
G′(α) > 0, and hence α∗ = min

{
(1 − 2−R1)

(
1 + 1

P

)
, 1

}=1,

since we have (1 − 2−R1)
(
1 + 1

P

) ≥ (1 + 1−ρ2

P ) > 1.

APPENDIX G
PROOF OF LEMMA 9

In order to characterize the capacity of the binary symmetric
MRC-D, we find the optimal distribution of (U, X1, ŶR) in
Theorem 1 for Z ∼ Ber(1/2). First, we note that U is
independent of YR since

I (U ; YR) ≤ I (X1; YR) = 0, (79)

where the inequality follows from the Markov chain
U − X1 −YR , and the equality follows since for Z ∼ Ber(1/2)
the channel output of the binary channel YR = X1 ⊕ N ⊕ Z is
independent of the channel input X1 [6]. Then, the capacity
region in (7) is given by

C = sup{I (X1; ŶR|U Z) : R1 ≥ I (YR; ŶR|U Z)},
where the supremum is taken over the set of pmf’s in the form

p(u, x1)p(z)p(yR|x1, z)p(ŷR|yR, u).

Let us define Ȳ � X1 ⊕ N . The capacity is equivalent to

C = sup{I (X1; ŶR |U Z) : H (Ȳ |ŶU Z) ≥ H (Ȳ |U) − R1},
over the joint pmf’s of the form

p(u, x1)p(z)p(ȳ|x1)p(ŷR|ȳ, u, z), (80)

where we have used the fact that Ȳ is independent from Z .
For any joint distribution for which 0 ≤ H (Ȳ |U) ≤ R1,

the constraint in (80) is also satisfied. It follows from the
Markov chain X1−Ȳ −ŶR given U, Z , and the data processing
inequality, that

C ≤ max
p(u,x1)

{I (X1; Ȳ |ZU) : H (Ȳ |U) ≤ R1}
= max

p(u,x1)
{H (Ȳ |U) − h2(δ) : H (Ȳ |U) ≤ R1}

≤ R1 − h2(δ). (81)

We next consider the joint distributions for which
R1 ≤ H (Ȳ |U). Let p(u) = Pr[U = u] for u = 1, .., |U |,
and we can write

I (X1; ŶR|U Z) = H (X1|U) −
∑

u

p(u)H (X1|ŶR Zu), (82)

and

I (YR; ŶR|U Z)
(a)= I (Ȳ ; ŶR|U Z)
(b)= H (Ȳ |U) −

∑

u

p(u)H (Ȳ |ŶR Zu), (83)
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where (a) follows from the definition of Ȳ , and (b) follows
from the independence of Z from Ȳ and U .

For each u, the channel input X1 corresponds to a binary
random variable Xu ∼ Ber(νu), where νu � Pr[X1 =
1|U = u] = p(1|u) for u = 1, . . . , |U |. The channel output
for each Xu is given by Ȳu = Xu ⊕ N . We denote by
qu � Pr[Yu = 1] = Pr[YR = 1|U = u]. Similarly, we define

Ŷu as ŶR for each u value. Note that for each u, Xu − Ȳu − Ŷu

form a Markov chain.
Then, we have H (X1|u) = h2(νu) and H (Ȳ |u) = h2(δ�νu).

We define su � H (Ȳ |ŶR Zu), such that 0 ≤ su ≤ H (Ȳu).
Substituting (82) and (83) in (80) we have

C = max
p(u,x1)p( ŷR|yR ,u)

[H (X1|U) −
∑

u

p(u)H (X1|ŶR Zu)]

s.t. R1 ≥ H (Ȳ |U) −
∑

u

p(u)H (Ȳ |ŶR Zu)

(a)= max
p(u,x1),

[H (X1|U) −
∑

u

p(u)FTXY (qu, su)]

s.t. R1 ≥ H (Ȳ |U) −
∑

u

p(u)su, 0 ≤ su ≤ H (Ȳu)

(b)= max
p(u,x1)

[H (X1|U) −
∑

u

p(u)h2(δ � h−1
2 (su))]

s.t. R1 ≥ H (Ȳ |U) −
∑

u

p(u)su, 0 ≤ su ≤ H (Ȳu),

(c)≤ max
p(u,x1)

H (X1|U) − h2

(
δ � h−1

2

(
∑

u

p(u)su

))

s.t.
∑

u

p(u)su ≥ H (Ȳ |U) − R1,

where (a) follows from the definition of FTXY (q, s) for channel
Ȳu = Xu ⊕ N , which for each u has a matrix TXY as
in (64), (b) follows from the expression of FTXY (q, s) for the
binary channel TXY in Lemma 11, (c) follows from noting
that −h2(δ � h−1

2 (su)) is concave on su from Lemma 12
and applying Jensen’s inequality. We also drop the conditions
on su , which can only increase C.

Then, similarly to the proof of Lemma 4, we have
H (Ȳ |U) ≥ H (Ȳ |U V ) = H (X1|U), and we can upper bound
the capacity as follows

C ≤ max
p(x1,u)

[
H (X1|U) − h2

(
δ � h−1

2

(
∑

u

p(u)su

))]

s.t.
∑

u

p(u)su ≥ max{H (X1|U), R1} − R1

≤ max
0≤α≤1

α − h2(δ � h−1
2 (max{α, R1} − R1)), (84)

where we have defined α � H (X1|U).
The optimization problem can be solved similarly to the

proof in Appendix D as follows. If 0 ≤ α ≤ R1, we have
s̄ ≥ 0 and

C ≤ max
0≤α≤R1

α − h2(δ) = R1 − h2(δ). (85)

For R1 ≤ α ≤ 1, we have

C ≤ max
R1≤α≤1

α − h2(δ � h−1
2 (α − R1)). (86)

Then, it follows from a scaled version of Proposition 1 that
the upper bound is maximized for α = 1. Then, by noticing
that (85) corresponds to the value of the bound in (86) for
α = R1, it follows that

C ≤ 1 − h2(δ � h−1
2 (1 − R1)). (87)

This bound is achievable by CF. This completes the proof.

APPENDIX H
PROOF OF THE CUT-SET BOUND

OPTIMALITY CONDITIONS

Cases 1 and 2 are straightforward since under these assump-
tions, the ORC-D studied here becomes a particular case of
the channel models in [3] and [5], respectively.

To prove Case 3 we use the following arguments. For any
channel input distribution to the ORC-D, we have

I (X1; YR |Z) = H (X1|Z) − H (X1|YR, Z)

≥ H (X1) − H (X1|YR)

= I (X1; YR), (88)

where we have used the independence of X1 and Z , and
the fact that conditioning reduces entropy. Then, the con-
dition maxp(x1) I (X1; YR) ≥ R1, implies maxp(x1) I (X1;
YR |Z) ≥ R1; and hence, the cut-set bound is given by
RCS = R2 + R1, which is achievable by DF scheme.

In Case 4, the cut-set bound is given by
R2 + min{R1, I (X̄1; ȲR|Z)} = R2 + I (X̄1; ȲR |Z) since
R1 ≥ H (ȲR|Z). CF achieves the capacity by letting X1 be
distributed with p̄(x1), and choosing ŶR = ȲR . This choice
is always possible as the CF constraint

R1 ≥ I (ŶR; ȲR |Z) = H (ȲR|Z) − H (ȲR|Z , ŶR) = H (ȲR|Z),

always holds. Then, the achievable rate for CF is RCF = R2 +
I (X̄1; ŶR |Z) = R2 + I (X̄1; ȲR|Z), which is the capacity.
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